Suppression of LX ribonuclease in tomato results in a delay of leaf senescence and abscission.

نویسندگان

  • Amnon Lers
  • Lilian Sonego
  • Pamela J Green
  • Shaul Burd
چکیده

Although present in different organisms and conserved in their protein sequence, the biological functions of T2 ribonucleases (RNase) are generally unknown. Tomato (Lycopersicon esculentum) LX is a T2/S-like RNase and its expression is known to be associated with phosphate starvation, ethylene responses, and senescence and programmed cell death. In this study, LX function was investigated using antisense tomato plants in which the LX protein level was reduced. LX protein levels normally become elevated when leaves senesce and antisense inhibition of LX retarded the progression of senescence. Moreover, we observed a marked delay of leaf abscission in LX-deficient plants. This correlated with specific induction of LX protein in the tomato mature abscission zone tissue. LX RNase gene regulation and the consequences of antisense inhibition indicate that LX has an important functional role in both abscission and senescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Programmed cell death occurs asymmetrically during abscission in tomato.

Abscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission. In this study, hallmarks of PCD were identifie...

متن کامل

Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals w...

متن کامل

The never ripe mutation blocks ethylene perception in tomato.

Seedlings of tomato fruit ripening mutants were screened for their ability to respond to ethylene. Ethylene induced the triple response in etiolated hypocotyls of all tomato ripening mutants tested except for one, Never ripe (Nr). Our results indicated that the lack of ripening in this mutant is caused by ethylene insensitivity. Segregation analysis indicated that Nr-associated ethylene insensi...

متن کامل

Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes

Little is known about the biological role of nucleases induced during plant senescence and programmed cell death (PCD). Arabidopsis BFN1 has been identified as a senescence-associated type I nuclease, whose protein sequence shares high homology with some other senescence- or PCD-associated plant nucleases. To learn about BFN1 regulation, its expression pattern was analysed. A 2.3 kb portion of ...

متن کامل

IDA-like gene expression in soybean and tomato leaf abscission and requirement for a diffusible stelar abscission signal

BACKGROUND AND AIMS The stimulatory and inhibitory role of ethylene and auxin, respectively, in leaf abscission (leaf drop) is well documented. More recently, IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) peptides and their putative interacting receptor-like-kinase partners, HAESA and HAESA-like2, were shown to be essential components in Arabidopsis floral organ abscission. Prior to research on I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 142 2  شماره 

صفحات  -

تاریخ انتشار 2006